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Abstract-An existing finite-difference solution procedure is employed to predict the hydrodynamics and 
heat-transfer within the open, cylindrical thermosyphon for laminar flow. The full elliptic forms of the 
governing conservation equations are solved. A brief review of the general aspects and features of the 
solution procedure is given. The application of the method to the present problem is described in detail. 

Predictions are obtained for a variety of uniform-property flows. These are compared with the results 
of the integral-profile boundary-layer analysis of Lighthill. The effects on heat-transfer are investigated 
of the Prandtl number, of the tube length/radius ratio and of the base boundary condition. Temperature 
and velocity contours and profiles are presented for each of the flow regimes which occur in the tube. 

Some predictions are also obtained for situations in which the fluid properties are temperature-depen- 
dent. The predicted heat-transfer rates are compared with the experimental results and with the predictions 
for uniform-property flow. 

The agreement between the present and Lighthill’s predictions is good in almost all respects. The 
variable property predictions are in good agreement with the experimental data. 

NOMENCLATURE 

a, acceleration parallel to a wall ; 

a+, 4+, Q., d,, coefficients in the general 
differential equation, equation (2) ; 

% fluid specific heat at constant 
pressure ; 

CM c, CR, Gv, coefficients in the tinite- 
difference equation, equation (6); 
average of the normal temperature 
gradient at the wall ; 
axial acceleration ; 
fluid thermal conductivity ; 
tube length ; 
distance between a boundary node 
and the adiacent interior node: 

average Nusselt number 
iiR 

[ 1 --. 
k ’ 

Prandtl number c fi [ 1 k ’ 
radial coordinate ; 
tube radius ; 
source term in the finite-difference 
equation, equation (6); 

temperature ; 
temperature at the tube wall ; 
reservoir temperature ; 
non-dimensional temperature 

= gz P R4 @,v - t) . 
- 1 VlcL ’ 

reservoir value of T; 
radial and axial velocity compo- 
nents ; 
axial coordinate; 
average over the non-adiabatic tube 
walls of the heat transfer coefficient; 
coefficient of thermal expansion of 
the fluid ; 

thermal diffusivity E k ; 
viscosity ; 

[ 1 PC, 

kinematic viscosity ; 
density ; 
dependent variable of the general 
differential equation ; 

+P, he f?h ~W& values of C$ at grid points 
in the finite-difference mesh ; 
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stream function, equation (4) ; 
non-dimensional stream function 

I 1 z -*pv . 
UL ’ 

w, kortidity, ;quation (3). 

1. INTRODUCTION 

1.1 The ~ro~lern considered 
THE OPEN thermosyphon is a device in which 
buoyancy-induced fluid motion is employed to 
transport heat from a high temperature region 
to a low-temperature reservoir. Figure 1 depicts 

Oriftce 

-~I 

Reservoir 

Heated 

Acceleration 
field 

FIG. 1. Illustration of the vertical, cylindrical open 
thermosyphon. 

a simple example of such a device; it consists of 
a tube of radius R and length L, closed at the 
lower end and open at the upper one to a large 
reservoir. The walls of the tube are at a uniform 
temperature t,, while those of the reservoir are 
at a lower, uniform temperature t, A down- 
wards-directed acceleration field causes the 
fluid heated by the tube walls to be exchanged 
by natural convection with cool fluid from the 
reservoir. The acceleration field may be due to 
gravity, or in the case of rotating systems, may 
result from centrifugal forces. 

In the engineering applications of the thermo- 
syphon, to be described below, the property of 
major interest to the designer is the heat- 

transfer rate. Our primary objective in the 
present work is to devise a prediction method 
for this, on the condition that the flow is steady, 
laminar and axially symmetrical. 

1.2 Motivation for the study 
Practical importance. The thermosyphon 

principle has found many engineering applica- 
tions, including the cooling of nuclear reactors 
and electrical transformers [l] ; and as a means 
for inducing circulation within centrifuges em- 
ployed for isotope separation [2]. It has also 
been proposed for the cooling of gas-turbine 
blades [3-5-J. 

These applications are, it must be admitted, 
generally much more complex than the simple 
situation which we are here considering; thus 
although the flow will normally be steady, it 
will often be turbulent; and less frequently per- 
haps, it will be three-dimensional as well. The 
latter complexity, due primarily to the limita- 
tions of present-day computers, will remain a 
formidable obstacle to prediction for some 
time to come. On the other hand, the method 
which we shall employ is already capable, in 
principle, of handling turbulent flows. We shall 
not, however, attempt to go this far in the 
present study. 

Theoretical relevance, Application of the 
laws of conservation of mass, momentum and 
energy to thermosyphon flow yields, even for 
the simple problem, a set of simultaneous non- 
linear elliptic partial differential equations which 
defy exact analytical solution. Although as we 
shall see below inspired application of approxi- 
mate analytical methods has achieved, especially 
for laminar flows, remarkable success, the 
prospect that such methods can be extended 
and applied to more complex situations is 

remote. For this reason, in the present contri- 
bution we have employed a computer-based 
finite-difference method of solution, described 
in [S]. Although this method had hitherto been 
successfully applied to many flow situations, 
none of these involved natural convection; thus 
we had as a secondary objective the determina- 
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tion of the suitability of the method for this 
class of problems. 

1.3 Summary of previous work 
The foundations of all existing analytically- 

derived prediction methods for the simple 
thermosyphon were laid some years ago by 
Lighthill [7]. He invoked the boundary-layer 
assumptions, thereby transforming the conser- 
vation equations from elliptic to parabolic form. 
The parabolic equations were then solved by 
an integral-profile technique. 

The profile assumptions required for this 
procedure were formulated to accord with 
postulates about the flow pattern in the thermo- 
syphon. Three different patterns were envisaged, 
according to the magnitude of the dimensionless 
parameter T, defined as :* 

T, = g3 pv(t, - t,)/vrcL; (1) 

where K, v and jI are respectively the thermal 
diffusivity, kinematic viscosity and coefficient 
of thermal expansion of the fluid, and gr is the 
(uniform) axial acceleration. The patterns were 
as follows : 

(a) For small T, (i.e. for long tubes or small 
Grashof numbers) a ‘similarity’ flow was en- 
visaged, in which velocity and temperature vary 
linearly with axial position. 

(b) For large T, (large Grashof numbers or 
short tubes) a boundary-layer regime was 
postulated, in which variations in velocity and 
temperature were supposed to be restricted to 
the immediate vicinity of the walls. 

(c) For intermediate T, a ‘non-similarity’ 
regime was assumed for which the velocity and 
temperature are everywhere dependent upon 
both axial and radial position, but for which 
the profile shapes, unlike the similarity flow, 
are allowed to vary with the axial location. 

Lighthill obtained predictions for both 
laminar and turbulent flow; the same general 

* T, is in fact equal to the product of the Grashof number 
based on R, the Prandtl number and the ratio R/L. 

approach was employed for the latter, but of 
course different profile assumptions were made 
from those for laminar flows. Subsequent 
studies [8-lo] have all been confined to laminar 
flow, and are essentially refinements and exten- 
sions of Lighthill’s method. 

Achievements and shortcomings of profile- 
based methods. It is now well-established [ 1 l-131 
that, for laminar flow, Lighthill’s heat-transfer 
predictions are in good (within about 10 per 
cent) agreement with experimental data, pro- 
vided that the fluid properties are evaluated at 
the temperature of the wall. For turbulent flows 
[l l-131 there is, however, a substantial dis- 
crepancy (up to a factor of 4) between the pre- 
dictions and experiment; moreover, the be- 
haviour of the flow does not accord well with 
Lighthill’s postulates. 

Notwithstanding the relative success, for 
laminar flows at least, of the profile-based 
methods, they are known to possess numerous 
shortcomings, particularly in respect of width 
of application. Thus, for example, should the 
specification of the problem be altered to allow 
an arbitrary axial variation in wall temperature, 
then a new analysis must be made; and the more 
complex the conditions, the more difficult is 
the task of solving the integral equations by 
analytical techniques. 

Finite-difference methods of the kind em- 
ployed in the present study are, by contrast, 
free from such shortcomings. Thus the condi- 
tions at the boundaries may vary in any fashion 
consistent with the requirement of axial sym- 
metry. The prospect that the predictions will 
be successful is of course enhanced by the fact 
that the full elliptic equations are solved, rather 
than the approximate parabolic ones. 

The attraction of finite-difference procedures 
is even greater for turbulent flows, where even 
inspired guesswork has failed to produced a 
suitable profile-based method. Finite-difference 
procedures allow the analyst to employ recently- 
developed mathematical models of turbulence 
[14,15] which minimize the amount of empirical 
input required. 
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1.4 Outline of the present contribution 
In the analysis of a problem by finite-difference 

methods, three main steps may be identified. 
Firstly, the mathematical model must be for- 
mulated: the major components are the dif- 
ferential conservation equations, and the asso- 
ciated boundary conditions. Then, the dif- 
ferential-equation set is replaced, by way of 
finite-difference techniques, with an algebraic 
set and a method of solution of the latter is 
devised. Finally, predictions are obtained on 
the digital computer; here suitable tests must 
be made to ensure, as far as possible, that the 
numerical predictions represent solutions of 
the differential equations. Section 2 of the 
present paper goes through these steps, with 
particular attention to the first and last. The 
finite-difference procedure is adequately des- 
cribed in [6], so only a brief outline is given here. 

Section 3 presents the results of the computa- 
tions, and compares them with Lighthill’s 
predictions and with experimental heat-transfer 
data. Although the comparisons show that the 
present predictions are superior to those of the 
profile-based method in several respects, per- 
haps the most important lesson to be drawn 
from the study is that the present method can 
successfully be employed for thermosyphon 
flows, and the way is therefore opened to the 
prediction of the more complex situations. 

2. ANALYSIS 

2.1 The mathematical problem 
Equations. The set of three simultaneous, 

non-linear, elliptic, partial differential equations 
which describe the flow have the common form : 

Here, z and I are respectively the axial and 
radial coordinates in a cylindrical-polar frame, 
while 4, the dependent variable may stand for: 

(i) The quantity o/r, where W, the vorticity, 
is defined by : 

(3) 

and V, and V, are respectively the local velocities 
in directions I and z. 

(ii) The stream function $, defined by : 

$ = j[Pr(I/,dr - Kdz)]; (4) 

where p is the density. 
(iii) The local temperature t of the fluid. 
The symbols a+ b,, c+ and &, which appear 

in the equation stand for coefficients, which 
vary in form according to the particular depen- 
dent variable under consideration, as indicated 
in Table 1 below. In this table, p stands for the 
viscosity, gz represents the gravitational accelera- 
tion, assumed to act parallel to the axis of the 
tube, and Pr is the Prandtl number. 

Table 1. DeJnitions of the cor/ficients which uppeur in 
equation (2) 

Dependent 

variable u+ b, c, 4 
4 

IL 0 l/p? 1 - 0. 

t 1 p/Pr 1 0 

In order to facilitate comparison with Light- 
hill’s predictions we shall initially follow his 
practice of taking as uniform the fluid properties 
in all but one term of the differential equations. 
The term in question is rg,dp/dr, which represents 
the ‘source’ of vorticity due to buoyancy forces. 
It will be re-written as: 

(5) 

where fl is a constant. These simplifications are 
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not however required by the numerical pro- 
cedure, so we shall also perform calculations in 
which the properties are allowed to vary, in 
order to assess the effect of such variations. 

Domain of solution and boundary conditions. 
Figure 2 displays this information. The solution 
domain extends only to the axis, in order to 
take advantage of symmetry, while for perhaps 

Orifice:(i)J+/Jz =Jw/Jz=o 

I 
(ii) For outflow, at/&O; 

for inflow, t=t, 

c--II 
Axis: 

(i) $ = 0 

(ii) ahkvar=O , 
(iii) at/ar=o 

2, 

Side wall: 

(iI JI=O 

(ii) w given by 
equation (71 

(iii) t=C 

Base:. (i) JI =O 
(ii) w given by equation (7) 
(iii) 1= /, 

FIG. 2. Illustration of the domain of solution and the 
boundary conditions. 

less obvious reasons, the reservoir is excluded as 
well. Here again we have followed Lighthill ; 
for he reasoned, and experiments have con- 
firmed, that the nature of the flow in the reser- 
voir has little influence on the heat-transfer 
process in the tube. Further, experiments have 
revealed [ 161 that a three-dimensional, unstable 
flow occurs where the tube meets the reservoir, 
and it is not certain whether a prediction method 
of the present kind would satisfactorily handle 
this flow. Investigation of this matter was felt 
to be an unnecessary diversion from the princi- 
pal objectives of the study. The exclusion of the 
reservoir produces gains in both economy and 
simplicity, for it allows the computational effort 
to be focussed on the all-important flow in the 
tube. 

Of course the orifice requires special attention 
when the boundary conditions are formulated. 
As is indicated in the figure, we have imposed 
the conditions that the streamlines and equi- 
vorticity lines run parallel to the axis. A like 

condition is imposed on temperature, when the 
flow direction is outwards; incoming fluid, on 
the other hand, is assumed to be at the reservoir- 
wall temperature t,. These conditions, it should 
be remarked, were chosen to be as simple as 
possible while still retaining the essential features 
of the orifice flow. 

The remainder of the boundary conditions 
are relatively straightforward. The stream func- 
tion assumes a constant value (arbitrarily taken 
as zero) on the walls, and the symmetry axis, 
while the vorticity on these boundaries may be 
deduced from special models of the flow near 
them. Details will be given later. 

2.2 The solution procedure 
General features. The finite-difference pro- 

cedure of [6], like others of its kind, focusses 
attention on a finite number of points distri- 
buted over the solution domain as the nodal 
points of a grid. An algebraic relation is sought 
between the value of 4 at a typical node P of 
the grid (Fig. 3) and its four immediate neigh- 
bours N, S, E, W. This relation is obtained by 

r 
t 

N 

r-- --- 

w ; PI E 

gt 

L__ __J 

S 

I 

FIG. 3. Illustration of a typical node P of the grid, together 
with its four neighbours, N, S, E and W. The dotted line 
marks the boundaries of the control volume or ‘cell’ over 

which the integration is performed. 

integration of the differential equation (2), with 
the aid of assumptions about the inter-node 
variation of 4. over a control volume or ‘cell’ 
(shown by the dotted lines in the sketch) which 
encloses P. The walls of the cell are supposed 
to be mid-way between the grid lines, which 
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need not be equally spaced. The result is a 
difference equation of the form: 

where the C’s are positive coefficients which 
express the combined influence of convection 
and diffusion, while S represents the total source 
of entity 4 in the cell. Finite-difference equations 
are also written for the half-cells adjacent to the 
boundaries, with the aid of the boundary cond- 
ditions; thus a set of simultaneous, non-linear* 
algebraic equations is obtained, in which the 
number of equations equals the number of 
of unknowns. This equation set is solved by the 
Gauss-Seidel successive-substitution technique. 

Apart from the generality of its framework, 
the present finite-difference method differs from 
its predecessors in one or both of the following 
important respects : 

(i) Particular care was taken in the formula- 
tion of the method to ensure, as far as possible, 
that convergence (that property of a method to 
proceed smoothly from a set of initial guesses 
to the final solution) will always be procured. 
The use of ‘upwind’ differences for the convec- 
tion terms is instrumental in securing this 
behaviour. 

(ii) Care was taken in the derivation of the 
finite-difference equations to ensure obedience 
to the relevant &conservation equation for 
each cell. 

Application to the thermosyphon problem. The 
application of the method to the thermosyphon 
problem is a relatively straightforward matter; 
virtually all that is required is to cast the 
boundary conditions into finite-difference form. 
Of these, only the conditions on temperature 
at the orifice and vorticity at the other boundaries 
require special attention. 

The wall vorticities are calculated from the 

* Because the C’s may themselves depend upon the 4’s. 

formula : 

a P mr - bh 
+ 

1 t3prp- (7) 

Here, the subscripts P and I refer respectively 
to the boundary node and the adjacent interior 
one, while n, denotes the distance between the 
two nodes. The properties p and ,u are evaluated 
at the wall temperature. The symbol a stands 
for the acceleration parallel to the wall in 
question; thus for the side wall a is equal to the 
gravitational acceleration g,, and for the base, a 
is zero. Equation (7) is derived by analytical 
solution of the differential equations, on the 
assumption that a one-dimensional Couette 
flow exists in the immediate vicinity of the 
walls. Details of the derivation are given by 
Tatchell [17]. 

For the symmetry axis, it may easily be 
deduced that the vorticity o will be zero. 
However w/r, the dependent variable in the 
differential equation for vorticity, will in general 
be finite. Consideration that in many flow 
situations the shear stress near a symmetry 
axis (very nearly proportional to o in this 
region) varies linearly with I leads to the 
following relation : 

W% = b-O% (8) 

where the subscripts have the significance 
ascribed to them above. 

The calculation of temperature of the orifice 
requires knowledge of the direction of flow. 
This is deduced, at each cycle of iteration, from 
the current values of the stream function, by 
way of the finite-difference equivalent of equa- 
tion (4). The temperature is then set at the 
reservoir value t, if the flow is inwards, or at 
the adjacent interior value t, if the flow out- 
wards. This procedure, it should be noted, 
allows the computer to determine the location 
of the boundary between the ingoing and out- 
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goining streams: a priori knowledge is not 
required. 

2.3 Details of the calculations 
Initial conditions. In an iterative procedure it 

is necessary to provide a set of initial values to 
start the computations. Provided the problem 
has a unique solution, the initial values should 
have no influence on the final result; they may 
however substantially influence the number of 
iterations required to obtain that result. 

In the present calculations, trials with widely- 
different initial distributions confirmed that 
the choice was indeed without influence on the 
outcome of the computations. The most econ- 
omical practice was therefore adopted; this was 
to employ as initial guesses either the results of 
a previous calculation, or values deduced from 
Lighthill’s analytical solutions. 

Tests for accuracy and convergence. It is 
conventional in the application of an iterative 
method to terminate the calculations when the 
maximum fractional change of 4 within the 
field between successive iterations is less than 
some pre-specified value. This practice is open 
to several objections, the main one being that 
the fractional-change criterion does not neces- 
sarily provide a measure of the nearness to the 
solution of the finite-difference equations; thus, 
for example, a slowly-converging process may 
be erroroneously taken as a fully-converged one. 

A better practice, and the one which was 
employed in the present study, is to test the 
degree of convergence by reference to the tinite- 
difference equations themselves: all that is 
required is to substitute the results to be tested 
into the difference equation (6) and to determine, 
for each cell in the field, and each variable, the 
closeness of the sum of the terms to zero. The 
imbalance may be thought of as a ‘residual 
source’ of entity 4, which must be reduced to an 
acceptable level before the calculations are 
terminated. 

The residual sources, it should be noted, 
possess a clear physical significance. Those for 
temperature, for example, provide a direct 

measure of the degree of departure from the 
energy-conservation principle. For the present 
problem, in which heat-transfer is of principal 
interest, it was required that the sum of the 
absolute values of all the residual sources of 
energy should be less than 0.1 per cent of the 
total energy input through the walls. 

The accuracy of the predictions was checked 
by comparison of results obtained with succes- 
sively liner grids, and otherwise identical cir- 
cumstances. On the basis of these comparisons 
it is estimated that the results obtained lie 
within 3 per cent of those which would be 
obtained with an infinitely line grid. Grids with 
between 15 and 31 lines in each direction 
(depending on T,) yielded this degree of accuracy. 
For large values of T, the accuracy obtained 
with a given number of lines was found to 
improve when the grid spacing was caused to 
decrease in a geometric progression, from the 
centre line to the cylindrical wall. 

Conditions of the calculations. Each calcula- 
tion produced the distributions within the flow 
of w, $ and t, as well as the value of the mean 
Nusselt number 5, defined and related to the 
temperature field by : 

where k is the thermal conductivity of the fluid, 
and o! and (w),,, are respectively the averages, 
over the non-adiabatic walls*, of the heat- 
transfer coefficient and the normal temperature 
gradient at the walls. The latter was obtained 
from the temperature field by Simpson’s Rule 
integration. 

Calculations were performed in which each 
of the three parameters T, Pr and L/R was 
varied, while the other two were held constant. 
The values covered in the calculations were: 
T,, 200 - lo6 ; Pr, 1 - lo4 ; and L/R, 5 - 45. 

* A limited number of calculations were performed in 
which the isothermal base was replaced by an adiabatic 
one, in order to determine the influence of the boundary 
condition at the base. 
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FIG. 4. Comparisons of predictions and experiment for Nu vs. T,. 

3. PRESENTATION AND DISCUSSION OF 

RESULTS 
not of any physical phenomenon. The present 

3.1 Predictions of average heat transjb jbr 
predictions are about 20 per cent in excess of 

uniform properties 
those of Lighthill for the similarity and non- 

According to Lighthill’s analysis, the Nusselt 
similarity regimes ; they are slightly below 

number depends only on the Prandtl number 
and the parameter T,. The present predictions 

05 
t -a‘--. . . . 

of Nusselt number vs. T, for a L/R of 45 and a 
Prandtl number of 100 are compared in Fig. 4 
with those of Lighthill. For these calculations, 
it should be recalled, the fluid property varia- 
tions were suppressed. It will be shown later 
that the large length to radius ratio and Prandtl 
number ensures a realistic basis for comparison 
with Lighthill’s predictions. Experimental re- 
sults have been obtained by Martin [12] for 
L/R = 473 and two high-Prandtl-number fluids 
and these are also shown on the figure; the fluid 
properties are evaluated at the wall temperature. 

The continuous nature of the?% vs. T, func- 
tion of the present work should be noted. The 
two distinct curves obtained by Lighthill, one 
for low T, representing his similarity and non- 
similarity solutions, and one for high T, repre- 
senting his boundary-layer solution, are a 
consequence of distinct profile assumptions and 

EC 
l \ 

t 
0-e ____z---___-- . 

IO /. 
/ 

/ 

AZ 8 F Boundary layer 
regime 

-a- Present predictions 

r, = I05 
---Japikse [IO] 

e- L/f?=45 

(b) 

FIG. 5. Predicted variation of ?& with Pr. 
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Lighthill’s results for the boundary-layer regime, 
but the discrepancy diminishes with increasing 

T,. 

3.2 Effect of Prandtl number, L/R, ana’ the base 
boundary condition for uni$orm properties 

The effect of Prandtl number on heat transfer 
for T, = 311 and 10’ is shown in Fig. 5(a) and 
5(b); the smaller value of T, corresponds to 
Lighthill’s similarity regime for Pr = co while 
the larger value is in the range of his boundary- 
layer regime. A slight decrease in heat transfer 
with increasing Prandtl number is predicted for 
both values of T,. Lighthill’s solutions at T, = 3 11 
for Pr = 1 and co are shown; these display a 
larger Prandtl-number effect than the present 
work suggests. The predictions of Japikse, 
which represent an extension of Lighthill’s 
analysis for the boundary-layer regime, are 
shown on Fig. 5(b). In contrast to the present 
work, Japikse predicts a rise in heat transfer 
with increasing Prandtl number. The reasons 
for the discrepancy will be explained later. 

It should be noted that the present work 
reveals no significant effect of Prandtl number 
for values greater than 100; this just&es the 
use of predictions based on this value for the 
heat transfer comparisons with Lighthill’s 
infinite-Pr solutions made in the previous 
section. 

Lighthill predicts no influence of the length 
to radius ratio, the cavity being presumed 
slender enough for the boundary-layer assump- 
tions to apply. The present solutions of the full 
elliptic equations support the validity of the 
boundary-layer approximations for L/R as 
small as 5. Calculations for still smaller values 
of L/R were not pursued because the artificially- 
imposed orifice boundary conditions are no 
longer justifiable in the limit of very small L/R. 

Since the boundary-layer assumptions pre- 
clude diffusion in the axial direction, Lighthill’s 
analysis implies no heat transfer at the tube 
base. The present solutions for the adiabatic 
base showed no significant difference in the 
overall heat-transfer rate from those for the 

isothermal base. The contours of stream function 
and temperature are also very similar, but a 
small ring vortex, of height always less than 
L/10, is predicted at an isothermal base. 

3.3 Stream-function and temperature contours for 
uniform properties 

Contours of dimensionless stream function 
and temperature (Y and T) for Pr = 100 and 
L/R = 45 are presented in Figs. 6(aHd) for 
T, = 200, 311, lo3 and lo’.* In terms of Light- 
hill’s flow regimes, these values of T, correspond 
respectively to similarity flow with a stagnant 
region, similarity flow tilling the tube, non- 
similarity flow, and boundary-layer flow. 

For T, = 200, an almost-stagnant pool near 
the tube bottom is indeed predicted; and when 
T, = 311 the fluid motion extends to the tube 
base. The kinks in the0 temperature profiles 
near the orifice are a consequence of the 
boundary condition imposed there. 

For T, = 103, the shape of the near-wall 
isotherm divulges that the heat transfer in- 
creases with increasing distance from the orifice. 
This contrasts the expectation of Lighthill that 
the heat transfer will decrease towards the tube 
base for all but boundary-layer flows. The 
present result is, however, consistent with the 
physically-appealing concept, evident in Fig. 4, 
of a smooth and continuous change towards 
boundary-layer flow behaviour with increasing 

T,. 

3.4 Velocity and temperature profiles for ungorm 
properties 

Figures 7(a) and (b) show dimensionless 
velocity and temperature profiles along a radius 
midway between the orifice and the base of the 
tube for T, = 311 and 10’ respectively; the 
Prandtl number is 100. Comparisons are made 
with Lighthill’s profile predictions for each of 
the two cases. For T, = 311, the similarity value, 
the agreement is good. 

Lighthill expected his boundary-layer regime 

* The plots are not to scale in respect of L/R. 
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(d 
FIG. 6. Dimensionless stream-function and temperature 

contours, at various T_, for Pr = 100 and L/R = 45. 

to occur for values of T, > 4000. In the limit of 
very large T, the flow would be identical to the 
free-convection flow on a flat plate in stagnant 
surroundings. Figure 7(b), for T, = 105, shows 
that, while a temperature potential core is 
predicted the velocity boundary layer fills the 
entire tube cross section. Solutions have been 
obtained for T, as large as lo6 and for a Prandtl 
number as low as unity; in all cases a velocity 
profile of this kind persisted. 

The predicted velocity profile cannot be 
0.2 0.4 0.6 0.6 I.0 

verified for the authors know of no experiments -I - 
on free convection in cavities where velocity 
has been measured. The close agreement in 

T, = 311 
-2- (a) 

overall heat transfer evident in Fig. 4 between - Present predictions Wr=lOO.L/R =45) 

the present work and that of Lighthill must be --- Lighthill’s [7] solutions (Pr= w) 

largely a consequence of the small dependence 
of integral quantities on the details of the IO= 

profile assumptions in integral-profile methods. 200 
r 

It is now possible to offer a plausible explana- 
5 x10* 

tion for the conflict which was displayed in 100 

Fig. 5(b) between the present results and those ;,$ ---- - --\ 
of Japikse [lo]. Evidently the true boundary- Y ’ 

I% 

\ 
0.2 O-4 0.6 0.8, I-O 0 0.2 04 06 O-6 I.0 

layer behaviour which the latter assumed in his r/R I 
\ r/R 

analysis does not exist. The behaviour is more 
-100 \ 

\ 
akin to that of the similarity regime for which 
both the present results and those of Lighthill 

-200 
(b) r, = IO5 

indicate that the Nusselt number diminishes as 
the Prandtl number increases. 

FIG. 7. Comparison of predicted velocity and temperature 
profiles at z/L = 05, with those of Lighthill. 

G 
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3.5 Predictions for temperature-dependent fluid 
properties 

It is of interest to obtain predictions for a real, 
variable-property fluid in order to confirm that 
these present no computational difficulty, and 
in order to assess the effect of the property 
variations on the heat-transfer. Accordingly, 
predictions have been obtained for three sets 
of conditions which correspond to the experi- 
ments of Martin [12] with rape-seed oil; the 
input to the computer program consisted of his 
data on the temperature dependence of the 
fluid properties as well as the experiment21 
values of t, t, and L/R. 

The predictions, which are represented by 
the circles in Fig. 4, very nearly coincide with 
the triangles which represent Martin’s data. 
Both the predicted and experimental Nu’s and 
T,‘s are evaluated using property values appro- 
priate to the wall temperature. There is no 
visible discrepancy between the uniform- 
property and the non-uniform property pre- 
dictions for low T, which, in the present circum- 
stances, corresponds to a small temperature 
difference between tube and reservoir. As T, 
increases, the effect of the temperature depen- 
dency of the fluid properties is to reduce s!ightly 
the heat transfer below that for uniform- 
property flow. 

At the largest value of T, for which predictions 
are shown, the viscosity evaluated at the reser- 
voir temperature is 320 per cent greater than 
that corresponding to the wall temperature. It 
must be concluded therefore that the effect of 
fluid-property variations is not significant in 
normal circumstances provided that the proper- 
ties are evaluated at the wall temperature. 

4. CONCLUSIONS 

(a) The full elliptic forms of the governing 
conservation equations have been solved by a 
finite-difference technique to obtain the hydro- 
dynamics and the heat-transfer characteristics 
within the open thermosyphon for laminar 
flow. The uniform-property heat-transfer results 

are in good agreement with the integral- 
profile boundary-layer analysis of Lighthill. 

(b) The flow patterns within the tube closely 
resemble those anticipated by Lighthill. For 
large Grashof numbers and short tubes, how- 
ever, the region of significant velocity variation 
is not confined to the near-wall region as he 
expected: rather the predicted velocity varies 
continuously across the whole of the tube cross 
section. 

(c) A slight decrease in heat transfer is pre- 
dicted with increasing Prandtl number for all 
tube-length and Grashof-number combinations. 
The decrease is less than that predicted by 
Lighthill for long tubes and small Grashof 
numbers; while for short tubes and large 
Grashof numbers, the present results contrast 
Japikse’s predicted rise in heat-transfer with 
increasing Prandtl number. 

(d) A continuous solution for all Grashof 
numbers and tube-length/radius ratios is pro- 
vided by the present work in contrast to the two 
discontinuous solutions obtained by Lighthill. 

(e) The effect of the temperature dependency 
of the fluid properties is small for typical 
laminar-flow experimental conditions provided 
that the properties are evaluated at the wall 
temperature. 

(f) The finite-difference solution procedure 
of reference [6] is revealed to be capable of 
straightforward extension to a complex natural- 
convection flow in a cavity. 

(g) The way is now clear for the prediction of 
turbulent flows. Suppositions about the turbu- 
lent transport hypotheses are easily incorporated 
into the procedure; but their worth must be 
tested by recourse to the experimental data. 
Work in this area is currently in progress. 
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ETUDE NUMERIQUE DES PERFORMANCES THERMIQUES D’UN THERMOSYPHON 

R&um&Une procedure aux differences hnies deja existante est utilisee pour determiner l’ecoulement 
laminaire et le transfert de chaleur dans un thermosyphon cylindrique ouvert. On r&out les equations de 
conservation de forme elliptique. Une rapide revue des aspects genbraux de la procedure est donnee. 
L’application de la methode au present probleme est d&rite en detail. 

Des resultats sont obtenus pour une varitte d’tcoulements a proprietes uniformes. 11s sont compares 
avec les resultats de l’analyse de Lighthill. On analyse les effets du nombre de Prandtl. du rapport longueur 
du tube/rayon et des conditions aux limites sur le transfert de chaleur. Les prolils de temperature et de 
vitesse sont prtsentts pour chaque regime d’bcoulement qui s’ttablit dans le tube. 

On obtient aussi quelques predictions dans le cas oh les proprittes du fluide dependent de la temperature. 
Les flux thermiques calcules sont compares avec les rdsultats exptrimentaux et avec les calculs pour un 
tcoulement a proprietes constantes. 

L’accord entre l’analyse prtsente et celle de Lighthill est bon sur la plupart des points. Les calculs avec 
proprietes variables sont en bon accord avec l’exptrience. 

NUMERISCHE UNTERSUCHUNG DER W.&RMEijBERTRAGUNG IN 
EINEM THERMOSYPHON. 

Zuwmmenfassung-Eine vorhandene Losungsprozedur mit endlichen Differenzen wird benutzt, urn 
Hydrodynamik und Wlrmetibertragung in einem offenen zylindrischen Thermosyphon bei laminarer 
Striimung zu bestimmen. Die volle elliptische Form der vorherrschenden Erhaltungssltze wird gel&t. 
Ein kurzer ijberblick iiber die allgemeinen Gesichtspunkte und Besonderheiten der Losungsprozedur 
wird gegeben sowie eine genaue Beschreibung der Anwendung dieser Methode auf das vorliegende 
Problem. Man erhalt Voraussagen fiir verschiedene gleichfiirmige Stromungen. Diese werden mit den 
Ergebnissen von Lighthill verglichen, der das Problem mit Hilfe der Integral-Profil-Grenzschicht liiste. 
Die Warmeiibertragung wird untersucht in Abhangigkeit von der Prandtlzahl, vom Verhlltnis Rohrllnge 
zum Rohrradius und von den grundlegenden Grenzbedingungen. Temperatur- und Geschwindigkeits- 
profile werden gegeben fiir jedes Striimungsverhaltnis, das im Rohr auftreten kann. Man erhllt such 
einige Voraussagen filr die Falle, bei denen die Eigenschaften de-s strijmenden Mediums temperaturab- 
hiingig sind. Die berechneten Wlrmeiibergangskoeffizienten werden mit Experimenten und mit den 
Ergebnissen fiir eine gleichfiirmige Stromung verglichen. Die Ubereinstimmung zwischen den vorhegenden 
Ergebnissen und denen von Lighthill ist ziemlich gut. Die Voraussagen bei variablen Eigenschaften 

stimmen gut mit Experimenten tiberein. 
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=ICIBCJIEHHOE BCCJIE~OBAHkiE 3@@EKTkiBHOCTkI TEILJIOOBMEHA 
OTICPbITOI’O TEPMOCB@OHA 

AEHOT84HsI-CyrrleCTBy~~K~ MeTOR peLUeHHR ypaBHeHdi B KOHeYHbIX paaHOCTRX KCnOJIb- 

3yeTcH Ana pameTa rHApOfiHHaMI4KH M TenJIOO6MeHa BHYTPH OTKpbITOrO qnnHHJJpaYecKor0 

TepMOCHl#OHa AJIFi JIaMHHapHOrO TeYeHHfI. PeIIIaIOTCR B nOJIHOM BJIJIHnTM~eCKOM BHAe OCHOB- 

me ypaBHeHMR coxpaaeaaa. AaeTCR KpaTKHti 0630~ OCHOBH~IX aCneKTOB M 0614~~ oco6ea- 

HOCTei MeTOAHKH PeIIIeHPifl. nOnpO6aO OnKCaHO npllMeHeHEie MeTOAa AJIH peIIIeHIlR AaHHO~ 

3anaw. 

HOJIyqeHbl paCqBTbl RJIfi pRAa TeqeHHi C OAHOpOJJHbIMR CBOtiCTBaMH. OHPI CpaBHRBaIOTCH C 

pe3yJlbTaTaMK aHam3a HHTerpanbHOrO MeTOAa JIaPrxmma ,!JJIH norpaHwiHor0 CJIOR. m- 

CJleAOBaHO BJlllRHMe Ha TennOO6Meg 4HCJla HpaHATJIfI, OTHOLLIeHHR AJIElHbI K paAHyCy II 

OCHOBHOrO rpaHmHor0 yCJIOBHR. flJIH KaiKAOrO pemimaTe9eHm,mAoqero MeCTO B Tpy6e, 

npeAcTasnema rpa+nKH pacnpeRenemm CK~POCTI~ yI TemepaTypbI. 

nOJIyqeHbITaK?Ke pa&TbIAJlH HeKOTOpbIXCJIy~aeB,KOr~aCBOiCTBaHEll~KOCTIl3aBHCFITOT 

TeMnepaTypbI. PaC'JgTHbIe CKOpOCTH TenJIOO6MeHa CpaBHHBaIOTCR C 3KCnepHMeHTaJIbHbIMH 

AaHHblMII,aTaKHfe C paC=IeTaMll AJlfl Te'leHHti C OAHOpOAHblMM CBOtiCTBaMki. 

COrJIaCOBaHHe MeHcAy paCYeTaME% ~afiTXHJI.ila EI De3yJIbTaTaMH HaCTORJQei pa6om BnOJIHe 

yAOBJIeTBOpHTeJIbHOe nO'iTH BO BCeX OTHOUIeHWiX Pacskkm AJIR Tesemi c nepenfeHHblm 
CBOiCTBaMn XOpOIIIO COrJIaCyIOTCfl C 3KCIlepNMeHTaJIbHbIMI4 AaHHbJMH. 


